A Qualitative Analysis of Variability Weaknesses in
Configurable Systems with #ifdefs

Raphael Muniz, Larissa Braz, Rohit Gheyi,
Wilkerson Andrade

Federal University of Campina Grande
{raphael,larissanadja}@copin.ufcg.edu.br
rohit@dsc.ufcg.edu.br
wilkerson@computacao.ufcg.edu.br

ABSTRACT

A number of critical configurable systems are implemented us-
ing #ifdefs, such as Linux. Some tools and strategies are proposed
to avoid these directives. However, these systems still have weak-
nesses, leading to vulnerable code, and may impact millions of
users. There is a lack of studies regarding the perception of devel-
opers of configurable systems with #ifdefs related to weaknesses,
and the strategies and tools they use to identify and remove them.
Moreover, few works study the characteristics of weaknesses. To
better understand the problem, we conduct two studies. In the first
one, we qualitatively analyze 27 variability weaknesses of Apache
HTTPD, Linux and OpenSSL reported on their bug trackers. In
the second study, we conduct a survey with 110 developers of the
previous configurable systems. Overall, our results show evidences
that, although developers care about weaknesses, they may not
detect some weaknesses reported in the bug trackers, and do not
use proper tools to deal with them. They take on median 15 days
and 4 discussion messages to solve them. Some weaknesses occur
due to two feature interactions, and most of them can be detected
by the all macros enabled sampling approach.

CCS CONCEPTS

« Security and privacy — Vulnerability management; .
Software and its engineering — Preprocessors; Software
product lines;

KEYWORDS

Variability Weaknesses, Security, Configurable Systems, Prepro-
cessor, #ifdefs, Survey

ACM Reference Format:

Raphael Muniz, Larissa Braz, Rohit Gheyi, Wilkerson Andrade and Bal-
doino Fonseca, Marcio Ribeiro. 2018. A Qualitative Analysis of Variability
Weaknesses in Configurable Systems with #ifdefs. In VAMOS 2018: 12th
International Workshop on Variability Modelling of Software-Intensive Sys-
tems, February 7-9, 2018, Madrid, Spain. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3168365.3168382

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VaMoS’18, February 7-9, Madrid, Spain

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5398-4/18/02...$15.00
https://doi.org/10.1145/3168365.3168382

Baldoino Fonseca, Marcio Ribeiro
Federal University of Alagoas
{baldoino, marcio}@ic.ufal.br

1 INTRODUCTION

Large Systems, such as Linux and OpenSSL, use C preprocessor
directives, such as #ifdefs, to implement variability [22]. However,
systems with many features may be difficult to evolve and maintain
due to the number of possible configurations [13]. The scenario
may become worse when these features interact, and may generate
negative effects to the system code, such as introducing weaknesses.
Weakness is a type of mistake in software that, in proper conditions,
could contribute to the introduction of vulnerabilities within that
software.! We call it a variability weakness when it occurs in some
configurations but not in others [1]. We only consider variability
via #ifdefs.

Malicious hackers search for weaknesses in code and unfixed
reports on bug trackers, and try to get benefits for exploring them,
damage the service availability, or sell the weaknesses information
in the black markets [7, 8]. In 2017, developers already reported
more than 10 thousand vulnerabilities to the National Vulnerabil-
ity Database (NVD).? A vulnerability is a weakness in the system
that might be exploited to cause loss or harm [21]. The Common
Vulnerabilities and Exposures (CVE) is a project idealized to share
information about vulnerabilities and how to fix them using an
index enumeration.? In addition, the Common Weakness Enumera-
tion (CWE) is a similar project regarding vulnerabilities.*

Ferreira et al. [6] perform an empirical study of the Linux Kernel
regarding the bad influence of preprocessor directives (#ifdefs) in
maintainability and comprehension of code. They investigated the
relationship between configuration complexity and the occurrence
of vulnerabilities according to some metrics. However, they were
not concerned with developers’ background about weaknesses re-
garding #ifdefs, and how to detect them. Abal et al. [2] classify bugs
reported to bug trackers. They classify them with respect to their
nature and number of occurrences. Their results show in what ways
variability affects and increases the complexity of software bugs.
However, they do not discuss about weaknesses. There are some
tools proposed that may help developers to detect weaknesses, such
as CPPCheck® and FlawFinder.® They can use sampling approaches
to select which configurations to test when using these tools [17].
However, there is a lack of evidences regarding whether developers
use the tools.

Lhttps://cwe.mitre.org/documents/glossary/index html#Weakness
Zhttps://nvd.nist.gov

Shttp://cve.mitre.org/

*https://cwe.mitre.org

Shttp://cppcheck.sourceforge.net/
®https://www.dwheeler.com/flawfinder/

https://doi.org/10.1145/3168365.3168382
https://doi.org/10.1145/3168365.3168382
https://cwe.mitre.org/documents/glossary/index.html#Weakness
https://nvd.nist.gov
http://cve.mitre.org/
https://cwe.mitre.org
http://cppcheck.sourceforge.net/
https://www.dwheeler.com/flawfinder/

VaMoS’18, February 7-9, Madrid, Spain

In this work, we perform an empirical study to better understand
the developers’ background in detecting weaknesses, and the tools
and strategies they use to perform this activity. We analyze vari-
ability weaknesses reported on configurable systems with #ifdefs,
such as Apache HTTPD, Linux, and OpenSSL. We manually ana-
lyzed 27 variability weaknesses of eight kinds. Developers take on
median 15 days and 4 discussion messages to fix them. Moreover,
we also analyze their priority level, and presence conditions. Fur-
thermore, we conduct a survey with 110 developers of the above
mentioned configurable systems. We ask them to select between
two code styles (with and without weaknesses), how they detect
weaknesses, and their experience. The complete results of both
studies are available online.”

Developers do not report weaknesses relating them to CWEs.
Besides, the majority of developers do not detect some kinds of
weaknesses in configurable systems. Furthermore, despite develop-
ers care about weaknesses, they do not use proper tools to detect
weaknesses in configurable systems. The main contributions of this
paper are:

e A qualitatively analysis of 27 variability weaknesses of three
real configurable systems (Section 3);

o A survey with 110 developers to better understand their
background and how they detect weaknesses (Section 4).

We organize the remainder of this paper as follows. In Section
2, we present a motivating example. Section 3 describes our study
to analyze bug reports regarding variability weaknesses related to
#ifdefs. Section 4 presents a survey to analyze developers experience
in detecting weaknesses, tools supporting, and strategies to detect
them. Finally, we relate our work to others in Section 5, and present
concluding remarks in Section 6.

2 MOTIVATING EXAMPLE

In this section, we describe an example of a high priority vari-
ability weakness in Linux (Bug id: 60570). Figure la presents a
simplified code snippet of the printk.c file of Linux (commit
2f90b68). It declares and initializes the print variable with 1 when
CONFIG_PRINTK_TIME is enabled. Otherwise, the variable is de-
clared but not initialized. Following, if the variable has the value
1 or if the buf pointer is NULL, the function will return 0 or 15,
respectively. Otherwise, the do_div function divides the ts vari-
able by 10°. Next, the sprintf function sends formatted output
to a char buffer, instead of printing it on console as the printf
function does. The function receives the buffer (buf), the string
format (“[%51u.%06lu]”), and the inputs ((long) ts and sec/1000).
In this example, the string format received as parameter allows the
output to have up to 15 characters.

A Buffer Overflow occurs in Line 10 if the input size is larger than
the string format size, which happens if the value of the ts variable
is greater than 99,999. This way, the data may be written outside the
buffer bounds, and may cause the execution of malicious code [11].
It is classified as the CWE-120: Buffer Copy without Checking Size
of Input (Classic Buffer Overflow). This kind of weakness is the
third most dangerous software error.® Buffer Overflow weaknesses

"http://www.dsc.ufcg.edu.br/~spg/vamos18-weakness/
Shttp://cwe.mitre.org/top25/

R. Muniz et al.

are related to some CVEs, such as CVE-2004-0200 and CVE-2001-
0050. In addition, it is a variability weakness since it occurs when
CONFIG_PRINTK_TIME is enabled, but it does not occur when it is
disabled.

In total, the real printk. c file contains 15 macros. By perform-
ing a per-file analysis, we identified that this weakness can be de-
tected by using the all macros enabled sampling approach. Figure 1b
presents the code fix that removes the weakness.

Previous studies [13, 17, 19] proposed tools and strategies to
detect weaknesses. Despite that, developers continue to develop
configurable systems containing weaknesses. For instance, devel-
opers already reported more than 10 thousand vulnerabilities to
the NVD in 2017. Moreover, there is still a lack of studies to verify
whether developers use proper tools in practice, and how develop-
ers test configurable systems with #ifdefs to detect weaknesses. In
this work, we study some reported weaknesses (Section 3), and we
conduct a survey with developers to evaluate their background and
how they detect weaknesses in configurable systems (Section 4).

3 STUDY I: VARIABILITY WEAKNESSES

In this section, we evaluate 27 variability weaknesses reported to
bug trackers of real configurable systems. First, we present the study
definition (Section 3.1) and planning (Section 3.2). Next, Section 3.3
presents and discusses the results. Finally, Section 3.4 describes
some threats to validity.

3.1 Definition

The goal of this study consists of analyzing bug reports for the
purpose of studying variability weaknesses with respect to their
characteristics from the point of view of C developers in the context
of configurable systems with #ifdefs. We address the following
research questions:

e RQ;: How many kinds of weaknesses occur on the analyzed
configurable systems with #ifdefs?

For each analyzed variability weakness, we classify it based
on CWEs.

e RQ3: How critical are the analyzed variability weaknesses?
For each analyzed variability weakness, we identified its
priority level based on bug reports.

e RQ3: Which sampling approaches can detect the analyzed
variability weaknesses?

For each analyzed weakness, we identify the sampling ap-
proaches that can detect it.

e RQ4: How many weaknesses occur inside #ifdefs?

The analyzed weaknesses occur inside #ifdefs, or outside but
depend on them to happen. For each analyzed weakness, we
identify where it occurs.

e RQs: How long do variability weaknesses take to be fixed?
For each analyzed weakness, we count how many days it
takes to be fixed in bug reports.

e RQ4: How many discussion messages in the bug reports are
necessary before a variability weakness to be fixed?

For each analyzed weakness, we identify the number of
discussion messages until it is fixed.

http://www.dsc.ufcg.edu.br/~spg/vamos18-weakness/
http://cwe.mitre.org/top25/

A Qualitative Analysis of Variability Weaknesses in Configurable Systems with #ifdefs

1 /7. ..
2 bool print;

4#ifdef CONFIG_PRINTK_TIME
4 print = 1;
5 #endif

size_t time(u64 ts, char sbuf){

/7. ..

8 if (!print)
9 if (!buf) return 15;
10 sec = do_div(ts, 1000000000);
11 return sprintf(buf,"[%51lu.%061ul",
12 (long)ts, sec/1000);

return 0;

(a) Code snippet with variability weakness.

VaMoS’18, February 7-9, Madrid, Spain

/7. ..

bool print;

#ifdef CONFIG_PRINTK_TIME
print = 1;

#endif

size_t
/7. ..
if (!print) return 0;
sec = do_div(ts, 1000000000);
if (!buf)

return

time (u64 ts, char «buf){

sprintf (NULL, "[%51u.000000]" ,
(long)ts);

return sprintf(buf, "[%5lu.%061ul",

(long)ts, sec/1000);

}
/...

(b) Code snippet without variability weakness.

Figure 1: Code snippets of Linux with a Buffer Overflow and the fixed version.

3.2 Planning

Subjects Selection. We perform an analysis of the bug reports of
Apache HTTPD and Linux. In addition, we evaluate reports of the
OpenSSL GitHub. Linux is a computer operating system. OpenSSL
is an open source project that provides a robust toolkit for the
Transport Layer Security and Secure Sockets Layer protocols. It
is also a general-purpose cryptography library. Apache HTTPD
is the core technology of the Apache Software Foundation. It is
responsible for projects involving web-based transmission tech-
nologies, data processing, and execution of distributed applications.
The analyzed configurable systems are widely used. Therefore, an
exploited vulnerability in one of them may affect a large number
of users.

Methodology. We search for weakness in bug trackers. First, we
used the keywords CWEs and CVEs. However, few developers use
them when reporting a weakness. So, we select keywords from the
24 deadly sins that are related to the C programming language. We
select two kinds of sins: implementation and cryptographic [10].
For example, integer overflow is the seventh sin, and it is associated
to the following CWEs: Incorrect Calculation (CWE-682), Integer
Overflow or Wraparound (CWE-190), Integer Underflow (CWE-
191), and Integer Coercion Error (CWE-192). We use the description
of the CWE? to search for variability weaknesses.

We manually classified each bug report yielded by our search us-
ing keywords as true positive, false positive or inconclusive. When
the keyword is not related to the expected weakness kind, we clas-
sified the bug report as false positive. In addition, some weaknesses
are not related to variability. We also classified them as false posi-
tives. We ignore the build-system for counting the layers of #ifdefs
in our study. We considered the bug report as inconclusive when
we could not relate it to some CWE, or when we could not fully
understand the weakness. Table 1 shows the variability weaknesses
(true positives) considered in our study.

We analyzed each variability weakness regarding its number
of macros, and whether it occurs inside or outside an #ifdef. We
perform a per file analysis to identify the sampling approach that

“http://cwe.mitre.org/data/definitions/682.html

Configurable

Keywords File Weakness IM VL NM Samp. #ifdef
System
Format String htdbm.c FormatString |1 (1| 0 | AE Inside
Apache Overflow ab.c Integer Overflow | 1 | 1 | O | AE |Outside
Weakness htpasswd.c Crypto Algorithm | 1 [1 [0 | OD [Outside
Overflow ring_buffer.c Integer Overflow [1 [1 | O | AE | Inside
Overflow printk.c Buffer Overflow [1|2 | O [AE |Outside
Overflow filemap.c Buffer Overflow [1| 1| 0 | AE |Outside
Overflow output_core.c | Integer Overflow | 1 | 1 [O | AE [Inside
Overflow |hid-picolcd_core.c| Buffer Overflow [1| 1| 0 | AE Inside
Strlen sysfs.c Integer Overflow | 1 | 1 [O [AD | Inside
Overflow kobject.h Buffer Overflow | 2 |2 | 1 | OD | Inside
Memory Leak page-flags.h Memory Leak | 1|1 |0 | AD [Inside
Linux Null Pointer intel_sdvo.c Null Pointer 110 | AE [Outside
Null Pointer auditsc.c Null Pointer 1|1(0 | AE | Inside
Null Pointer blk-mq.c Null Pointer 1|10 | AE |Outside
Null Pointer ray_cs.c Null Pointer 1|1|0 | AE |Outside
Null Pointer tep_ipvé.c Null Pointer 11| 0| AE [Outside
Memory Leak | ipv6_sockglue.c Memory Leak |1 [1| O | AE [Outside
Overflow mmap.c Integer Overflow [2 | 1 | O [AE |Outside
Overflow addr.c Buffer Overflow | 1 [1 [O [AE | Inside
Overflow page_alloc.c Buffer Overflow [1 | 1| 0 [AE | Inside
Null Pointer statem_clnt.c Null Pointer 1(2|1]| AD Inside
Overflow b_print.c Format String 2 (2| 0| OD |Outside
Attack encode.c Integer Underflow| 1 | 1 | O [AE |Outside
OpenSSL | Memory Leak d1_pkt.c Memory Leak |1 [1| 0 | AD [Outside
Overflow srp_lib.c Buffer Overflow |1 |1 [0 [AD | Inside
Race Condition| t1_lib.c Race Condition |1 (1| 0 | AE Inside
Overflow t1_lib_.c Integer Overflow [1 | 1 | O [AD | Inside

Table 1: Analyzed variability weaknesses. Keyword = Key-
word that yields the bug report with the weakness; IM =
Number of macros that yield the weakness; VL = Variabil-
ity Level of the weakness; NM = Number of Nested Macros;
Samp. = Sampling Approach that can detect the weakness;
AE = All Enabled; AD = All Disabled; OD = One Disabled;
#ifdef = Whether the weakness occurs inside or outside an

#ifdef.

can detect it. We do not consider feature models. For example, if a
weakness occurs inside an #ifdef M1 with no nested #ifdefs, only
M1 needs to be enabled to detect the weakness. Both all macros
enabled and one macro enabled sampling approaches can detect the
weakness. However, we reported the sampling approach with less
effort in terms of number of configurations. In our example, we
report that the all macros enabled sampling approach can detect
the weakness.

http://cwe.mitre.org/data/definitions/682.html

VaMoS’18, February 7-9, Madrid, Spain

0 D 0 acro
Avg Total | Avg |Median
Apache HTTPD 12 893 70| 23.33 17
Linux 43 1,145 141 8.29 5
OpenSSL 16 1,438 103 14.71 6|
ota 71 3,476 314 46.33 2

Table 2: Median and total of time and discussion messages
to fix a variability weakness per analyzed configurable sys-
tems. Time to Fix/Total and Median = Sum and Median of
days between the report being created and the weakness be-
ing fixed; Discussion Messages/Total and Median = Sum and
Median of Discussion Messages in the bug reports.

3.3 Results and Discussion

The keywords that returned more bug reports are: Memory Leak
(293), Overflow (274), Strlen (124), and Attack (102). Some key-
words returned a low number of bug reports, such as: CWE (3) and
Weakness (18). In total, we analyzed 27 variability weaknesses. The
weakness kind with most occurrences is Buffer Overflow (seven).
We also identified the following kinds: Null Pointer (six), Integer
Overflow (six), Memory Leak (three), Format String (two), Race
Condition (one), Risky Cryptographic Algorithm (one), and Integer
Underflow (one). In total, 17 weaknesses of four kinds occur in Linux
(6 Buffer Overflows, 5 Null Pointers, 4 Integer Overflows, 2 Mem-
ory Leaks). Moreover, seven out of the eight kinds of weaknesses
occur in OpenSLL. The Risky Cryptographic Algorithm weakness
only occurs in Apache HTTPD, in which Format String and Integer
Overflow also occur (once each).

Malicious agents can negatively explore weaknesses [3]. For ex-
ample, a malicious agent that seeks to gain partial or total control
of a host at Internet can exploit a Buffer Overflow to insert extra
data encoded with specific instructions in a buffer. The extra data
can flood the buffers, causing an overage and compromising the
integrity of the original data. The implemented data has now infil-
trated most buffers, giving the agent the capability to access other
files on the network, manipulate programming or delete important
data.

Observation 1: Most analyzed variability weaknesses are
Buffer Overflows and Null Pointers.

We identified each analyzed variability weakness whether it
occurs inside or outside an #ifdef. In total, 14 (51.85%) of them
occur inside #ifdefs, while 13 (48.15%) occur outside these clausules.
Moreover, 14.82% of them are inside two nested #ifdefs. Furthermore,
the variability weaknesses involve one (89.65%) or two (10.35%)
macros.

The statement where the weakness itself occurs may be inside or
outside an #ifdef. Figure 2 presents a code snippet with a Division-
by-Zero weakness. The weakness occurs outside an #ifdef (Line 7).
However, it happens when the M1 macro is disabled. All variability
weaknesses that occur in Apache involved only one macro. One
of them occurred inside an #ifdef, while the other two weaknesses
occurred outside.

R. Muniz et al.

1 #ifdef M1
int varl = 10;
#else
4 int varl = 0;
#endif

int main () {
int var2 = 10/varl;

s}

Figure 2: Code snippet of a Division-by-Zero variability
weakness that occurs outside #ifdefs.

Observation 2: The analyzed variability weaknesses involve
up to two macros.

In addition, we identified the sampling approaches that can de-
tect the analyzed variability weaknesses. In total, 19 (70.37%) of the
analyzed variability weaknesses can be detected by the all macros
enabled sampling approach, 5 (18.51%) by the all macro disabled sam-
pling approach, and 3 (11.12%) by the one macro disabled sampling
approach. The Buffer Overflow weakness presented in Figure 1a can
be detected by the all macros enabled sampling approach, while the
Division-by-Zero weakness presented in Figure 2 can be detected
by the all macro disabled sampling approach. Table 1 presents the
reported sampling approaches that can detect the analyzed weak-
nesses (see Column Sampling).

Some tools can detect some kinds of weaknesses. For exam-
ple, CppCheck can detect Buffer Overflow, Integer Overflow, Null
Pointer, and Memory Leak. However, developers have to identify
the configurations to be tested. By default, it analyzes the code
using the one enabled sampling approach.

Observation 3: The all macros enabled sampling approach
can detect most analyzed variability weaknesses.

The analyzed variability weaknesses are identified as high, nor-
mal, and low priority in their bug reports. In total, 40.74% of them
have high priority, and 59.25% have normal priority. The developers
did not indicate the priority level of a weakness in Linux. Further-
more, none of them have low priority. It seems that developers
recognize the importance of this security problems.

The analyzed variability weaknesses took on median 4 discussion
messages and, 15 days to be fixed. In some cases, developers took
720 days to fix a Buffer Overflow in the Linux project. As another
example, some high priority Memory Leaks took more than 60 days
to be fixed in the Linux project. The system was vulnerable during
these days. This may happen due to the complexity of detecting and
fixing weaknesses related to #ifdefs, specially when they involve a
number of macros and are inside nested #ifdefs. Developers must
quickly fix some bugs to avoid the system to be exposed.

Observation 4: No analyzed variability weakness has low
priority.

A Qualitative Analysis of Variability Weaknesses in Configurable Systems with #ifdefs

3.4 Threats to Validity

We analyzed a subset of the returned bug reports in the search
due to time constraints. Analyzing different bug reports may change
our observations. As future work, we intend to analyze more bug
reports and kinds of weaknesses. We could not analyze some bug re-
ports, since we did not understand them. Analyzing them also may
change our observations. Furthermore, we analyzed three config-
urable systems in different domains, but we intend to analyze other
systems as future work. Finally, developers report few weaknesses
using the CWE and CVE terminology. We manually analyzed each
bug report and related them to CWEs. It is an error-prone activity
since it depends on our knowledge.

4 STUDY II: SURVEY

In this section, we survey developers that contribute to the con-
figurable systems considered in Study I. First, we present the study
definition (Section 4.1) and planning (Section 4.2). Next, Section 4.3
presents and discusses the results. Finally, Section 4.4 describes
some threats to validity.

4.1 Definition

The goal of this study consists on analyzing developers’ back-
ground for the purpose of evaluating their background in weak-
nesses on configurable systems with #ifdefs, and the tools and
strategies used with respect to identifying weaknesses from the
point of view of C developers in the context of configurable systems
with #ifdefs. We address the following research questions:

e RQ7: Which tools do developers use to detect weaknesses in
configurable systems?

o RQg: Which sampling approaches do developers use to detect
weaknesses in configurable systems?

e RQy: How many developers identified weaknesses in sur-
vey’s code snippets?
We asked developers to choose between code with and with-
out weakness (Format String, Integer Overflow, Null Pointer
Dereference, and Buffer Overflow) reported in bug trackers
of configurable systems.

4.2 Planning

The survey contains two parts. In the first one, developers choose
the code style (C code snippets with or without variability weak-
nesses) that they prefer. We select five weaknesses in bug trackers
of Apache HTTPD, Linux, and OpenSSL. All of them are fixed. One
code snippet contains a weakness and the other one shows how
developers fixed them. Figure 1 presents code snippets similar to
one question of the survey. We include one question related to
CWE-120 Buffer Copy without Checking Size of Input (rank 3),
two questions related to CWE-131 Incorrect Calculation of Buffer
Size (rank 20), one question related to CWE-134 Uncontrolled For-
mat String (rank 23), and one question related to CWE-190 Integer
Overflow or Wraparound (rank 24). The Top 25 Most Dangerous
Software Errors indicates their rank.'

In the second part of the survey, developers answer questions
about their experience, tools, and configurations used to detect

Ohttp://cwe.mitre.org/top25/

VaMoS’18, February 7-9, Madrid, Spain

weaknesses. They classify their experience in a scale from none
(zero) to high (five). Moreover, they indicate the tools and sampling
approaches used to detect weaknesses. We provide the following
tool options: CppCheck, GCC,!! FlawFinder, RATS,2 Clang,13 and
other — where they can indicate other tools.

4.3 Results and Discussion

We sent emails to 4,079 developers of Apache HTTPD, Linux,
and OpenSLL, and 110 of them answered our survey, achieving a
response rate of 2.69%. Many developers have experience in detect-
ing weaknesses (see Figure 4b), and 83.40% of them have more than
three years of experience with C preprocessor directives, such as
#ifdefs (see Figure 4c). In total, only 4.54% of developers do not care
about not introducing weaknesses in commits (see Figure 4a).

The majority of them chose code snippets without the Format
String (see Figure 3a), Integer Overflow (see Figures 3b and 3e),
and Null Pointer Dereference (see Figure 3b) weaknesses. However,
some developers prefer code snippets containing the Buffer Over-
flow weakness (see Figure 3d). Most developers that incorrectly
answer this question care about weaknesses in configurable sys-
tems, and 32.72% of them have more than five years of experience.

Three developers (3.60%), that care about detecting weaknesses
and have more than five years of experience, chose the code snip-
pet containing Format String. Moreover, some developers (37.80%)
chose the code snippet containing an Integer Overflow, or liked
both code snippets. Twenty-nine of them (26.36%) declared to have
more than five years of experience. One developer with 3-5 years
of experience preferred a code snippet containing the Null Pointer
Dereference weakness.

Observation 5: A number of senior developers could not
detect Integer and Buffer Overflows.

Many developers check the all macros enabled (21.90%) and all
macros disabled (14.70%) sampling approaches to verify the presence
of the weaknesses. However, many developers (24.70%) do not check
any configuration (see Figure 4e). In total, 25 out of 75 developers
that have more than five years of experience working with #ifdefs
stated they use all macros enabled sampling approach. In total, four
developers have less than a year of experience. Two of them do
not test any configuration, one use the all enabled and all disabled
sampling approach, and one uses Checksec,!* a bash script to check
the properties of executables.

Observation 6: Some developers do not check any configu-
ration to detect weaknesses.

Some developers (11.50%) do not use any tool to detect weak-
nesses in the code (see Figure 4d). The most used tools are GCC
(38.80%), CLang (22.80%), and CPPCheck (10.50%). Some of the
tools are not variability-aware. Moreover, some tools do not asso-
ciate bugs to CWEs, and cannot detect some of the weaknesses
considered in our survey. Most developers with less than a year

Uhttps://gee.gnu.org/
2https://github.com/andrew-d/rough-auditing-tool-for-security
Bhttps://clang llvm.org/
Yhttp://www.trapkit.de/tools/checksec.html

http://cwe.mitre.org/top25/
https://gcc.gnu.org/
https://github.com/andrew-d/rough-auditing-tool-for-security
https://clang.llvm.org/
http://www.trapkit.de/tools/checksec.html

VaMoS’18, February 7-9, Madrid, Spain

| strongly prefer (A)110.9% | strongly prefer (A)

| prefer (A)112.7% | prefer (A)

It does not matter{ 11.8% It does not matter

| prefer (B)1 Il 18.9% | prefer (B)

| strongly prefer (B) { NG 75.7% | strongly prefer (B)

(a) Weakness in option “A”
| strongly prefer (A) | NG 24.5%
| prefer (A) | NG 22.7%
It does not matter | [l 6.6%
| prefer (B) | NG 24.5%

| strongly prefer (B){ NG 21.7%

R. Muniz et al.

I 24.3% | strongly prefer (A){ NG 67.6%
I 37.9% | prefer (A){ I 23.4%
I 29.7 % It does not matter| Il 8.1%

W 4.5% | prefer (B){ | 0.9%

H3.6% 1 strongly prefer (B){ 0%

(b) Weakness in option “B”

(d) Weakness in option “A”

(c) Weakness in option “B”
1 strongly prefer (A){ NN 60.4%
1 prefer (A){ I 29.7%
It does not matter{ 12.7%
| prefer (B){ 04.5%

| strongly prefer (B){ 12.7%

(e) Weakness in option “B”

Figure 3: Results of the questions about code style preference regarding weaknesses: (a) Format String, (b) Integer Overflow,
(c) Null Pointer Dereference, (d) Buffer Overflow, (e) Integer Overflow.

of experience use GCC and Clang to detect weaknesses in con-
figurable systems. Some developers (56.63%) have more than five
years of experience and also use GCC and Clang for this task. De-
spite that developers care about weaknesses, a number of them do
not use proper tools to detect weaknesses in configurable systems.
There are better tools than compilers to detect weaknesses, such as
CppCheck and FlawFinder.

Observation 7: Some developers do not use proper tools to
detect weaknesses in configurable systems with #ifdefs.

4.4 Threats to Validity

Developers may misunderstand the code snippets in our survey,
since we did not include all files. Although the questions contain real
weaknesses of configurable systems, the results of this study can
only be interpreted in the context of the considered code snippets.
We intend to survey more developers as future work.

5 RELATED WORK

Ferreira et al. [6] conducted an empirical study of the Linux
Kernel to analyze whether #ifdefs influence the occurrence of vul-
nerabilities. They investigated the relationship between configu-
ration complexity and the occurrence of vulnerabilities according
to some metrics. They counted the number of #ifdefs that appear
inside a function. They considered how many distinct configuration
options are used within a function. They analyzed the vulnerability

history of functions, by checking whether a certain function has
been touched by developers to fix past vulnerabilities. Their analy-
sis revealed that vulnerable functions have, on average, 3.04 times
more #ifdefs internally than non-vulnerable functions. Moreover,
vulnerable functions have on average 4.2 times more configuration
options internally than non-vulnerable functions. Vulnerable func-
tions have fewer configuration options, and have, on average, a 1.3
times more outgoing function calls than non-vulnerable functions.
Our work complements their work [6] by studying 27 variability
weaknesses reported in bug trackers of Linux, Apache HTTPD, and
OpenSSL. We analyze some metrics that are not analyzed by them,
such as number of days to fix a bug, priority level, number of nested
#ifdefs. In addition, we also performed a survey with developers of
the configurable systems. We identified that some of them (11.5%)
do not use any tool to detect weaknesses, and some developers
cannot detect Buffer and Integer Overflows involving #ifdefs.
Chowdhury and Zulkernine [5] aimed at verifying the relation-
ship between complexity metrics and the vulnerability occurrences
by studying releases and more than four years of vulnerability
history of Mozilla Firefox. They found that complexity, coupling,
and lack of cohesion metrics positively correlate to the number of
vulnerabilities at a statistically significant level. Neuhaus et al. [20]
performed a study to verify if components that shared similar sets
of function calls are more propitious to be vulnerable. We used
different kinds of metrics in our study and performed a survey
with developers different from their work [5, 20]. We only analyze
variability weaknesses that involved up to two macros, and some
of them (17.25%) occur inside two nested #ifdefs. We identified

A Qualitative Analysis of Variability Weaknesses in Configurable Systems with #ifdefs

51 [52.8%
41 [35

31 Il46%
21 [20.4%
21 M37%
11 5%
11 [0.9%
o1 IMs.5%
0{ 0%

51 I 27
41 NN 20.4%
31 I 35.2%

VaMoS’18, February 7-9, Madrid, Spain

More than five years [N 6.7%
3-5years - 16.7%
1-2years - 13%

Less than a year{ [|3.6%

(b) What is your background/knowledge
about weaknesses in configurable systems

(a) How much do you care about weaknesses
with #ifdefs?

when performing a commit?
GCC{ N 38.8%
CLang{ NG 22.8%
Do not use | I 11.5%
CppCheck | [10.5%
Coverity { [l 6.9%
Others | [l 6.5%
Valgrind{ [1.5%

Sparse{ B1.5%

(d) Do you use any tool(s) to detect weak-

nesses in the code? Which one(s)?

(c) For how long have you been working /
have worked with preprocessor directives

#ifdefs?
Not checked | [INEGENGEGN 2472
All macros enabled { [INGNG 21.9%
All macros disabled { [N 14.7%
One macro enabled { [INNEG 14.1%
Others | [IIIIGIN 12.9%

One macro disabled | [N 11.7%

(¢) When you verify the presence of
bugs/weaknesses in the code, which
configurations do you usually check?

Figure 4: Results of our survey about developers’ background and tools to detect weaknesses.

that most of the analyzed weaknesses can be detected by the all
macros enabled sampling approach (70.37%), but only 21.90% of the
developers use this approach when testing the systems codes.

In the context of patches to fix vulnerabilities, Li and Paxson [16]
used the NVD to perform a large-scale empirical study of security
patches. They studied more than 4,000 bug fixes for over 3,000 vul-
nerabilities that affected a diverse set of 682 open-source software
projects. Besides that, they characterized the security fixes in com-
parison to other non-security bug fixes, exploring the complexity
of different types of patches and they impact on code bases. Differ-
ent from them, besides considering variability, we also considered
some C code metrics in our analysis. We conducted a survey with
developers to better understand how they detect weaknesses.

Abal et al. [2] proposed a qualitative study of variability bugs
of the Linux Kernel, Apache, Marlin, and BusyBox that provides
insights about the nature, and number of occurrences. They investi-
gated in what ways variability affects and increases the complexity
of software bugs. They studied 25 kinds of bugs. In total, 19 of them
are related to CWEs, such as Memory Leak and Null Pointer. Differ-
ent from us, Abal et al. [2] did not investigate Format String, Race
Condition, Risky Cryptographic Algorithm, and Integer Underflow
weaknesses. We also considered some information form bug track-
ers. In addition, we conducted a survey with developers of these
systems. We identified that 52.8% of them care about weaknesses
when performing a commit. However, almost 62% of them use GCC

and Clang to detect weaknesses. which are compiler tools and do
not detect weaknesses.

Medeiros et al. [18] interviewed 40 developers, and conducted
a survey with 202 developers to understand why they still use C
preprocessor directives despite the strong preprocessor criticism
in academia. In our work, we conducted a survey with developers
to verify their experience in detecting weaknesses in configurable
systems. Moreover, we asked them the tools and strategies used
to detect weaknesses. Our results show that developers do not
use appropriate tools to detect weaknesses regarding #ifdefs. A
number of them could not detect Integer and Buffer overflows in
our questions.

Previous studies [4, 12, 15, 23] have proposed strategies to deal
with configuration-related faults. Braz et al. [4] proposed CheckCon-
figMX, a change-centric approach to compile configurable systems
with #ifdefs. It performs a per-file impact analysis and identifies the
configurations impacted by code changes. CheckConfigMX uses
GCC to compile only the impacted configurations. They found 595
compilation errors of 20 kinds on the repository history of BusyBox,
Apache HTTPD, and Expat. The reduced the effort of compiling
this configurable systems by at least 50% (on average 99%) in terms
of analyzed configurations — without considering feature models.
Different from us, they investigated only compilation errors, and
did not detect variability weaknesses. In our study, we investigated
the analyzed weaknesses characteristics, such as their priority level.

VaMoS’18, February 7-9, Madrid, Spain

Furthermore, we can extend CheckConfigMX to identify variability
weaknesses using FlawFinder, for example.

Kaistner et al. [14] proposed TypeChef, a variability-aware parser
that uses abstract syntax trees to verify all possible configurations
at once. However, TypeChef does not detect weaknesses on config-
urable systems with #ifdefs. In this work, we conducted a survey
with developers of the analyzed configurable systems regarding
the tools used to detect vulnerability weaknesses in configurable
systems with #ifdefs. Most developers use GCC (38.8%) and Clang
(22.8%) to perform this activity. However, there are better tools to
detect them, such as CppCheck and Valgrind. In addition, 6.5% of
them do not use any tool to detect vulnerability weaknesses in
these systems.

Medeiros et al. [17] presented a study to understand the trade-
off between effort and fault-detection capabilities comparing 10
sampling approaches regarding the size of the samples and their ca-
pability of fault detection. Their results show that simple algorithms
with small sample sets, such as most-enabled-disabled, are the most
efficient in most contexts. In this work, we analyzed characteristics
of 27 vulnerability weaknesses reported to bug trackers. Similar to
their findings, our results show that the all macros enabled sampling
approach detects most analyzed weaknesses (70.37%), while the one
macro disabled sampling approach detects 11.12% of them.

Garvin and Cohen [9] conducted an exploratory study on hun-
dreds of faults from the open source systems GCC and Firefox,
to revisit the notion of a feature interaction fault. Only 3 out of
28 faults are related to features interactions. We identified some
feature interactions that yield some weaknesses.

6 CONCLUSIONS

We qualitatively analyzed 27 variability weaknesses of eight
kinds. The most frequent weakness is Buffer Overflow (seven),
followed by Null Pointer (six). The variability weaknesses involve
up to two macros, and 51.85% of them occur inside #ifdefs. Moreover,
most of them can be detected by the all macros enabled sampling
approach. Developers took on median 15 days and 4 discussion
messages to fix them.

Overall, our results show evidences that, although developers
care about weaknesses, they cannot detect some weaknesses re-
ported in the bug trackers. Some tools, such as CPPCheck and
FlawFinder, may help developers to detect some weaknesses. How-
ever, most developers do not use proper tools to identify them.
Moreover, developers do not report weaknesses relating to CWEs.
It seems developers do not know them. CWE and CVE projects may
help them improving their knowledge in detecting weaknesses. Fi-
nally, it is important to quickly fix some kinds of critical weaknesses,
avoiding exposing the system to malicious attacks.

As future work, we intend to analyze more bug reports and
kinds of weaknesses. In addition, we aim at analyzing more config-
urable systems in different domains and using different variability
mechanisms. Furthermore, we intend to interview some develop-
ers to better understand how they detect weaknesses. Finally, we
will investigate a subset of metrics that can predict weaknesses in
configurable systems.

R. Muniz et al.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers. This work was
partially supported by INES, funded by CNPq grants 308380/2016-9,
460883/2014-3, 465614/2014-0, 306610/2013-2, and 409335/2016-9,
FAPEAL PPGs 14/2016, FAPEAL grants 60030 000435/2017 and
60030 1201/2016, CAPES grants 175956 and 117875, and DEVASSES.

REFERENCES

[1] 1. Abal, C. Brabrand, and A. Wasowski. 2014. 42 Variability Bugs in the Linux
Kernel: A Qualitative Analysis. In Proceedings of the 29th International Conference
on Automated Software Engineering. 421-432.

1. Abal, J. Melo, S. Stanciulescu, C. Brabrand, M. Ribeiro, and A. Wasowski.

2017. Variability bugs in highly-configurable systems: a qualitative analysis.

Transactions on Software Engineering and Methodology (2017).

[3] C. Anley,]. Koziol, F. Linder, and G. Richarte. 2007. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes. John Wiley & Sons, Inc.

[4] L. Braz, R. Gheyi, M. Mongiovi, M. Ribeiro, F. Medeiros, and L. Teixeira. 2016.
A change-centric approach to compile configurable systems with #ifdefs. In
Proceedings of the 15th International Conference on Generative Programming:
Concepts and Experiences. 109-119.

[5] I Chowdhury and M. Zulkernine. 2010. Can complexity, coupling, and cohesion
metrics be used as early indicators of vulnerabilities?. In Proceedings of the 25th
Symposium on Applied Computing. 1963-1969.

[6] G.Ferreira, M. Malik, C. Kastner, J. Pfeffer, and S. Apel. 2016. Do #ifdefs influence
the occurrence of vulnerabilities? An empirical study of the Linux kernel. In
Proceedings of the 20th International Systems and Software Product Line Conference.
65-73.

[7] M. Finifter, D. Akhawe, and D. Wagner. 2013. An empirical study of vulnerability
rewards programs. In Proceedings of the 22nd USENIX Conference on Security.
273-288.

[8] S. Frei, D. Schatzmann, B. Plattner, and B. Trammell. 2010. Modeling the security
ecosystem - the dynamics of (In)security. Springer US, 79-106.

[9] B.Garvin and M. Cohen. 2011. Feature interaction faults revisited: an exploratory
study. In Proceedings of the 22nd International Symposium on Software Reliability
Engineering. 90-99.

[10] M. Howard, D. LeBlanc, and J. Viega. 2010. 24 deadly sins of software security:

programming flaws and how to fix them. McGraw-Hill, Inc.

J. Hulse. 2012. Buffer overflows: anatomy of an exploit. (2012). https://nvd.nist.gov

[12] M. Johansen, O. Haugen, and F. Fleurey. 2012. An algorithm for generating t-wise

covering arrays from large feature models. In Proceedings of the 16th International

Software Product Line Conference. 46-55.

C. Kastner, S. Apel, T. Thiim, and G. Saake. 2012. Type checking annotation-based

product lines. Transactions on Software Engineering and Methodology 21, 3 (2012),

1-39.

[14] C. Kastner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.

2011. Variability-aware parsing in the presence of lexical macros and conditional

compilation. In Proceedings of the 26th ACM International Conference on Object

Oriented Programming Systems Languages and Applications. 805-824.

D. Kuhn, D. Wallace, and A. Gallo. 2004. Software fault interactions and implica-

tions for software testing. IEEE Transactions on Software Engineering 30, 6 (2004),

418-421.

F. Liand V. Paxson. 2017. A large-scale empirical study of security patches. In

ACM Conference on Computer and Communications Security. 2201-2215.

[17] F. Medeiros, C. Késtner, M. Ribeiro, R. Gheyi, and S. Apel. 2016. A comparison
of 10 sampling algorithms for configurable systems. In Proceedings of the 38th
International Conference on Software Engineering. 643-654.

[18] F. Medeiros, C. Kastner, M. Ribeiro, S. Nadi, and R. Gheyi. 2015. The love/hate
relationship with the C preprocessor: an interview study. In Proceedings of the
29th European Conference on Object-Oriented Programming. 495-518.

[19] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kastner, B. Ferreira, L. Carvalho,
and B. Fonseca. 2017. Discipline matters: refactoring of preprocessor directives
in the #ifdef hell. IEEE Transactions on Software Engineering (2017).

[20] S.Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. 2007. Predicting vulnerable

software components. In Proceedings of the 14th Conference on Computer and

Communications Security. 529-540.

C. Pfleeger and S. Pfleeger. 2002. Security in computing. Prentice Hall Professional

Technical Reference.

[22] H. Spencer and G. Collyer. 1992. #ifdef considered harmful, or portability

experience with C news. In USENIX Summer. USENIX Association, 185-197.

R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. 2011. Configuration

coverage in the analysis of large-scale system software. In Proceedings of the 6th

Workshop on Programming Languages and Operating Systems. 1-5.

2

=
LM

[13

[15

[16

[21

[23

https://nvd.nist.gov

	Abstract
	1 Introduction
	2 Motivating Example
	3 Study I: Variability Weaknesses
	3.1 Definition
	3.2 Planning
	3.3 Results and Discussion
	3.4 Threats to Validity

	4 Study II: Survey
	4.1 Definition
	4.2 Planning
	4.3 Results and Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions
	References

